preprocessing: discretize: bin: number of items in interval equal frequency: kol el intervals ad b3d equal width: el difference between el last element wel first element <= 10 w msh lazem kul el intervals tb2a ad b3d preprocessing: remove null values discretize: if needed (apriori) normalization: (KNN - Kmean - DBSCAN - Heirarchal) apriori: data must be nominal (discretize) KNN - Kmean - DBSCAN - Heirarchal: normalization strong rule - association rule (apriori) dependency -> lift frequent items count = sum of size of set lazy classifier - neighbor - distance KNN (IBK) data might be nominal either numerical statistical classifier: (NAIVE BAYES) data must be nominal ID3 (J48) data must be nominal